Algebraic Number Theory

Exercise Sheet 2

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	29.10.2024

Exercise 1. Let A be an integral domain and let F be the field of fractions of A. Let B be a ring, such that $A \subseteq B \subseteq F$. Show that the canonical morphism of fields $f: F \to K$ is an isomorphism, where K is the field of fractions of B.

Exercise 2. Let B be an integral domain and A a subring of B such that B is integral over A. Show that B is a field if and only if A is a field.

Exercise 3. Let A be an integrally closed ring. Let K be the field of fractions of A. Let $K \subset L$ be a finite field extension of K, B the integral closure of A in L and let $x \in B$. Show that x is a unit in B if and only if $N_K^L(x)$ is a unit in A.

Exercise 4. Let d be a square-free integer. Let $L = \mathbb{Q}(\alpha)$ be a quadratic field, where $\alpha^2 = d$. Let \mathcal{O}_L be the ring of elements in L integral over \mathbb{Z} .

- (0) Show that the \mathbb{Q} -linear map $\operatorname{Tr}^{L}_{\mathbb{Q}} : L \to \mathbb{Q}$ and the norm homomorphism $N : L^* \to \mathbb{Q}^*$ induce respectively a \mathbb{Z} -linear map $\operatorname{Tr} : \mathcal{O}_L \to \mathbb{Z}$ and a homomorphism $N : \mathcal{O}^*_L \to \{1, -1\}$.
- (1) Describe the kernel and image of \mathbb{Z} -linear map $\operatorname{Tr} : \mathcal{O}_L \to \mathbb{Z}$.
- (2) Consider the induced homomorphism $N: \mathcal{O}_L^* \to \{1, -1\}$. Show that
 - (2.1) if d < 0, the homomorphism N is trivial.
 - (2.2) if d = 2, the homomorphism N is surjective.
 - (2.3) if d = 3, the homomorphism N is trivial.